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ABSTRACT 

MACHINE LEARNING WITH FOX AND HOUNDS 

By 

Dino Biel 

Master of Science in Computer Science 

Deep Q Learning is a topic that has become very popular of late in the field of 

Machine Learning (ML), and especially when it comes to games. AlphaGo Zero and 

AlphaZero are two ML agents that have been created by Google utilizing Deep Q 

Networks (DQN) that have had massive success. AlphaGo Zero became a master of the 

game go, while AlphaZero was able to master the games of: go, chess, and shogi. The 

games of go and chess are played between two players, each player has the same number 

of pieces to move, and the move sets of each player are equivalent. 

 Instead of working with a game where both sides have equal pieces and move 

sets, I decided to work with a game that does not share those qualities. The game of fox 

and hounds is a simple game to both understand and play, but it deviates from chess and 

go by giving each player different pieces, move sets, and goals to accomplish. This 

makes the problem of creating ML agents more complex, as you now must create two 

different ML agents to play the same game instead of just one. I created a DQN agent for 

both the fox and hounds’ players to play the game. The results taught me how impactful 

different inputs, objectives, and outputs could be on the agents involved.
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Chapter 1: Introduction 

1.1 Motivation 

I have always been interested in learning new things throughout my scholastic 

career. Pushing myself to explore new topics outside of my comfort zone is a hobby of 

mine. With these things in mind, I chose my thesis topic to be my ultimate test. I wanted 

to throw myself into all sorts of discomfort for this final act of my master’s degree. 

I have never explored the topic of ML prior to my thesis, nor have I used the 

language of Python extensively. Hearing about AlphaGo Zero and AlphaZero quickly 

drew my interest into the field of ML and naturally that is how my thesis topic was born. 

The game of fox and hounds was an intriguing game to dive into because despite its 

simplicity, the game itself does have a unique quality with respect to ML. That quality is 

both players require separate model types since they do not share the same pieces and 

move sets. I became curious to learn how this quality would impact both agents from a 

learning aspect with everything else being equal.  

1.2 The Game of Fox and Hounds 

Fox and hounds is a board game that is played between 2 players on an 8x8 

chessboard. The player who is controlling the fox only has one piece to move, and the 

player controlling the hounds has 4 pieces to move. The goal for the fox player is to 

successfully get to the other side of the board where the hounds start, and the goal for the 

hound’s player is to trap the fox in such a way that the fox has no valid moves. 
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Figure 1.1: Initial game state with 1 fox (black) and 4 hounds (white) 

 

The initial setup of the board is shown above in figure 1.1.  The board is 

structured using standard chess notation. The black piece for the fox above would be in 

location “a8” to denote column “a” row “8”. If the fox can reach: b1, d1, f1, or h1 the fox 

will have won the game. As stated previously, the hound’s goal is a little less straight-

forward. The goal for the hounds is to trap the fox on any square where the fox cannot 

make a valid move.  

This end game scenario can take place on any valid square except for the winning 

squares for the fox: b1, d1, f1, and h1. The winning conditions are not the only thing that 

the fox and hounds differ on. The movement for the fox piece also differs from the 

movement of the hounds’ pieces. 
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Figure 1.2: (Left) valid moves for fox. (Right) valid moves for hounds. 

 

 As seen above in figure 1.2 the fox can move diagonally 1 step in any direction; 

however, the hounds can only move diagonally forward from their current position. Once 

the hounds move forward there is no way for them to back track. Below are some 

possible end game scenarios for the hounds in figure 1.3.  

 

Figure 1.3: Example winning scenarios for hounds 

 The hounds can also enter no-win scenarios for themselves which exist when all 

the hounds have moved past the row the fox is on. For example, if the hounds have 

reached row 8 before the fox has reached one of their winnings squares on row 1 the 

hounds have lost. Human players who play this game may realize that once the hounds 
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have all passed the fox the game is over, but for an ML agent this may not be apparent. I 

will have to account for this scenario which I will discuss in a later chapter. Below in 

figure 1.4 you can see a sample no win scenario for the hounds. Because the hounds can 

no longer move forward and they cannot backtrack they have no chance of victory. 

 

Figure 1.4: Example no-win scenario the hounds can enter 

 

1.3 Objectives 

My overall objective was to create two agents, one for the fox and one for the 

hounds, utilizing a DQN structure and perform different types of analysis on both agents. 

After I had created the agents, I tested them under several conditions to see how well they 

would perform. My primary goal was to pit the agent controlling the fox and the agent 

controlling the hounds against each other to see which one has better performance.  

I also performed tests to see how each of the agents learned against varying levels 

of AI opponents. It became clear over extensive testing that one agent was more 
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dominant than the other, so I decided to explore other methods of improvement outside 

the structure of a DQN. I also have added the ability for humans to play against both 

agents to gauge their abilities.   
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Chapter 2: Literature Review 

2.1 Reinforcement Learning 

 

Figure 2.1: The agent acts upon the environment to obtain new information 

In terms of reinforcement learning (RL), an agent is a model which learns to act 

within an environment. RL is a computational approach to learning whereby an agent 

tries to maximize the total amount of reward it receives when interacting with a complex, 

uncertain environment [1]. The goal of RL is to learn the optimal policy, or the optimal 

approach for an agent to act within an environment. 

 Think of the agent as an actor in a play, and the environment the stage in which 

the actor acts upon. At any given moment the actor can perform several actions inside of 

the environment. If the actor performs well, they are rewarded with cheers from the 

audience. If the actor performs poorly they are punished with boos from the audience. 

Every action that the actor performs always takes us to a new state in which the actor 

must decide on what to do next. 

The RL loop in figure 2.1 can be summarized as a Markov Decision Process 

(MDP). An MDP Contains: 

➢ A set of possible states ‘S’. 
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➢ A set of possible actions ‘A’. 

➢ A real valued reward function R(s,a). 

➢ A description T of each action’s effects in state. 

I also assume the Markov Property which states, “the effects of an action taken in a state 

depend only on that state and not on the prior history.” [2]. Looking back to figure 2.1 

you can see that an MDP helps define the variables needed for our RL loop. 

2.2 Deep Learning 

 

Figure 2.2: A deep, densely connected NN and the activation function between layers 

 Deep learning (DL) is a subfield of machine learning concerned with algorithms 

inspired by the structure and function of the brain called artificial neural networks (ANN) 

[3]. An ANN is a network of connected nodes, and each node is called a neuron. Each 

connection in the network has a weight, a bias, and an activation function. Weights are 

values that are housed in a neuron based on the input data fed to the ANN. This data 

could be the current state of a game board for example. Biases are numbers that are 

designed to make sure the expected outcome occurs, and they are fine-tuned over time as 

a ML model learns. Both the weight and the bias are fed to the activation function for the 

neuron, and these values will decide if the neuron will fire.  
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 The activation function’s output will vary depending on the function used, and the 

one I elected to use for my project was a rectified linear unit (ReLu). In figure 2.2 you 

can see the formula that ReLu utilizes. The variable x is the sum of the weight and the 

bias for the current neuron, and if x is greater than 0, then the neuron will fire sending the 

value of x to the next hidden layer. A negative value for x will cause the neuron to send 0 

instead. When the weight alone is not enough for the neuron to fire as necessary, the bias 

will act as a correction to make sure the intended outcome occurs. Weights alone are not 

enough to ensure the intended outcome occurs. Since weights are multiplied against the 

input value passed in to the neuron, if the input value is 0 it will wipe out the weight 

leaving the bias alone to determine if the neuron should fire. The importance of the bias 

builds over time as a ML model learns to act upon its environment with the data it 

receives.  

In figure 2.2 you can see an example of what an ANN can look like. An ANN can 

take many forms, but for it to be considered deep it must contain at least two hidden 

layers in its architecture [4]. The core of DL consists of an ANN that contains an input 

layer, at least two hidden layers, and an output layer. This is also referred to as a deep 

neural network (DNN). If the network has fewer than two hidden layers it is simply 

referred to as a neural network (NN).  

 There are multiple ways to connect the layers of an ANN. Figure 2.2 refers to the 

fact that each layer in its network is densely connected. This simply means that given two 

layers of nodes in a network, all the nodes in the first layer are connected to the nodes in 

the second layer.  
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 Another type of connection is called a convolutional layer. Convolutional layers 

apply a convolution operation to the input, passing the result to the next layer. The 

convolution emulates the response of an individual neuron to visual stimuli. If an ANN 

utilizes convolutional layers between hidden layers it is typically referred to as a 

convolutional neural network (CNN). CNN’s have become very popular in the field of 

ML because of their ability to take raw pixels as inputs. This means that an ANN can 

utilize image data as an input and convert the image into a 2-dimensional array to be fed 

as input to the ANN. A CNN can still work with non-image related data if needed. 

 

 

Figure 2.3: The process of converting an image to data in a CNN 

Source: https://goo.gl/v6nrDn 

 

This allows us to create a network that can generalize problems more quickly and 

efficiently than networks with only densely connected layers. CNN’s are not fully 

connected between layers. This means there are fewer calculations that are needed as data 
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passes through the network, and there are fewer neurons in the network waiting for 

calculations to complete as they would be in a densely connected neural network.  In 

figure 2.3 you can see how a CNN converts an image to data, and how the layers are 

interconnected.   

 

 

Figure 2.4: Example of a residual connection 

 The final type of connection that I will discuss is a residual connection. Networks 

that contain these types of connections are referred to as residual neural networks (RNN). 

RNN’s utilize skip connections or short-cuts to jump over some layers [5]. In figure 2.4 

you can see an example of a skip connection represented by the smaller arrow going from 

layer 1 to layer 3. This type of structure has shown to be largely beneficial to ANN’s due 

to the fact it protects against the vanishing gradient problem suffered by other type of 

ANN’s. 

 When you have a DNN with several layers and neurons this can cause instability 

in training the network. The network learns through back-propagation, which means that 

the values of the weights and biases are updated in a process that feeds backwards 

through the DNN. This value that is updating the DNN is called the gradient. As the 
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gradient works backwards through the network it is calculated as the product of 

multiplication between the layers.  

During this process the initial layers are the last to be updated and this is where 

the vanishing gradient occurs. The initial layers rely on all the layers after them to update 

their gradient. However, if layers towards the end of the network compute a small 

gradient, when this is passed to the beginning of the ANN the gradient will no longer be 

able to update the weights and biases effectively. The updates will become 

disproportionally small compared to the weights and biases of the early layers prohibiting 

the network from learning at all, and this is what is referred to as the vanishing gradient 

problem. A RNN manages to protect against this problem by allowing layers to 

communicate with more than just the layers immediately before or after it. This allows 

the gradient to propagate backwards successfully and prohibit the vanishing gradient 

problem from occurring.  

2.3 Q- Learning 

Q-Learning (QL) is a subset of RL. Chapter 2.1 showed that RL is focused on 

states, actions, and rewards at given time steps to teach an agent an optimal policy. QL 

shares the same overall goal as RL, but the added twist is that QL does not require a 

model and is a model-free algorithm in the realm of ML [6].  

QL will converge on an optimal policy for any finite MDP. It accomplishes this 

task by maximizing the expected value of the total reward over all successive steps 

starting from the current state [7]. The “Q” in QL comes from the name given to the 
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function that provides the reward. People typically associate the “Q” to stand for quality 

of an action taken in each state. 

Figure 2.5: An example Q-matrix, and reward matrix 

 In figure 2.5 you can see an example of a Q-matrix. The rows represent the 

current state and the columns represent the action to take. More formally it is defined as 

Q(s,a) which represent the given action at a current state. In QL the Q-matrix is 

essentially the brain where the decisions on actions will be made. The reward matrix 

contains the reward for the action taken in a given state. 

When you observe the Q-matrix in figure 2.5, if you look at the states to be rooms 

and the actions to be entering a different room you can determine the best path to our 

goal from any room in the house. The reward matrix identifies room 5 to be our goal 

room by assigning the value of 100 as the reward for entering that room. The value -1 in 

the reward matrix symbolizes that those rooms are not connected. The value 0 in the 

reward matrix symbolizes that 2 rooms are connected, but the action does not lead to the 

reward room. 

For the Q-matrix, the values in the table are the confidence that the action taken 

will lead to a reward. As you may have noticed these numbers vary, but simply following 



13 
 

the path of greatest confidence in a fully trained network will lead you to the reward as 

fast as possible. For an untrained network the values will update during a process of trial 

and error until it converges on an optimal policy.  

 The Q-matrix confidence values are set arbitrarily when it is initialized, and it will 

take the agent time to discover the optimal policy. The agent learns this policy from 

experience, but it takes an extremely large amount of attempts at finding the goal to get a 

firm understanding of what the best policy truly is. The following formula is the heart of 

how the Q-matrix ultimately gets updated. 

 

Figure 2.6: Updating the Q-matrix 

 In figure 2.6 you can see the formula for how to update the Q-matrix and the 

terminology in the equation will now be defined. 

➢ 𝑸(𝒔, 𝒂) –This contains the current policy for a given state and action pair. 

➢ r – This is the reward for a given state and action. Rewards can be defined in 

several ways including in matrix form such as by R(s,a) similarly to the Q-

matrix. 

➢ 𝒎𝒂𝒙𝑸(𝒔𝒕+𝟏, 𝒂)– This represents all future states and actions in the formula 

and returns the max Q value from them. 

➢ 𝜶 – This is the learning rate which is a hyper-parameter. This controls how 

the model reacts to new information. When this variable is close to 1 it treats 
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new information with the highest priority, and when this variable is close to 0 

it treats new information with extremely low priority. 

➢ 𝜸 – This is the discount rate which controls how far into the future the agent 

will look when it comes to rewards. This variable is typically a number 

between 1 and 0. If this variable is set to 1, then all rewards no matter how far 

into the future will be considered with equal weight. If this variable is set to 0, 

then the algorithm will act greedily only considering the reward for the next 

step and no other. This is another variable where finding the right balance is 

important for the given task. This is also a hyper-parameter. 

➢ 𝒕 – This is simply the current time step of our iteration. 

There is one more thing to be considered before evaluating the final algorithm. 

The topic that I will discuss briefly is exploration vs. exploitation. Let’s return to the 

example of our agent trying to locate the goal room of room 5 from figure 2.5. If the 

agent on the first run found the goal room in twenty steps, after the Q-matrix is updated it 

now knows a path to room 5. What is to stop the agent from taking the route again? 

Once the agent has a policy that can tell it how to get to the end goal, the agent 

will repeat that policy without fail. This means that if the agent does not receive a push of 

some kind then it will be stuck in repeating the same actions forever and will never learn 

the true optimal policy. This is the exploration vs. exploitation dilemma. 

There is a rather elegant simple strategy called the epsilon-greedy strategy. The 

epsilon-greedy strategy employs the use of two variables, epsilon and a randomly 

generated number. Both epsilon and the randomly generated number are values between 
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1 and 0. If the random number is larger than epsilon then the agent will take a random 

action instead of an action based on its policy. If the random number is smaller than 

epsilon, then the agent will continue to follow its policy acting deterministically. If 

epsilon is set to 1 then the agent will always act deterministically, and if epsilon is set to 

0 then the agent will always act randomly. 

The last piece of information to introduce before seeing the final formula is the 

definition of an episode. An episode is all actions taken from a starting state to reach a 

goal state. 

 

Figure 2.7: Pseudocode for QL 

 In the pseudocode in figure 2.7 you can see all the pieces discussed have come 

together. This is QL and it is a completely model-free approach to ML. 

2.4 Deep Q-Learning 

 To this point I have already covered three major concepts in ML; however, Deep 

Q-Learning (DQL) is where they all come together. As the name implies, DQL is a 

marriage of the concepts of DL and QL. Looking back at figure 2.5 you can see that our 

Q-matrix is relatively small for the problem presented and it is easy to picture all the 

possible states.  
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 Now try to imagine creating a Q-matrix for all the possible states for the game of 

chess. This task quickly becomes impossible as chess has more states than there are 

atoms in the universe. Even relating it to the game of fox and hounds will net you a 

difficult venture in trying to create the correct sized Q-matrix. 

 DQL keeps all the concepts discussed in section 2.3, but it replaces the Q-matrix 

with ANN from section 2.2. The core concept here is that the ANN is going to assume 

the role of the Q-matrix and simulate it within its structure. Since the ANN is going to 

simulate the Q-matrix, I must determine how the ANN will receive the information from 

the environment. 

The two layers of an ANN I did not discuss in detail were the input layer and the 

output layer which I will do now. For the remainder of this section I will use the game of 

fox and hounds for our example. The input layer is where you pass the current state of the 

game to the agent. This is where the ANN can effectively determine what is going on in 

the game at the current moment. 

 There are several ways to pass this information to the ANN, and these methods 

depend on what type of structure you elected to utilize such as a CNN or a RNN. I 

elected to utilize a densely connected neural network. I also elected to represent the board 

as a two-dimensional array of integers. This array is what I ultimately pass to the ANN in 

the input layer. This way the ANN can see the entire current state of the board. There are 

more specifics to the parameters which I will cover in chapter 6. 

 Past the hidden layers is the output layer which is the final layer I did not discuss 

in the previous section. The output layer ultimately is where the ANN decides to provide 
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an action; however, I need to define how the ANN will provide the action it would like to 

select. All the moves that can be done ultimately get mapped to an integer value and the 

agent selects from one of the available integers and this is the method I elected to utilize. 

The key pieces of information are all in place for our core understanding of how an ANN 

can successfully augment a QL agent. 

 The input layer provides the states of the game and the output layer will provide 

the actions needed. Recall from 2.3 that the Q-matrix is comprised of state and action 

pairs or Q(s,a). This is how our DQL agent can successfully replicate the elegance of QL 

with the power of DL. The states are provided to the ANN in the input layer, and the 

output layer will provide the action. Once that action is taken, the loop will continue in 

the same form as it did previously in section 2.3 until the final state is reached.  There is 

only one more wrinkle which we will throw in to complete the DQL agent and that 

wrinkle is called experience replay [8]. 

 Think of experience replay as the memories of the ANN. As the model plays the 

game it continues to collect states, actions, rewards, and checks if the game has ended. 

Once the game has ended, experience replay takes the game that was played and plays it 

back for the agent in reverse. In the game of fox and hounds this allows it to see who has 

won and the steps the game took to get to that final state. Experience replay is a major 

part of the algorithm that helped the researchers over at DeepMind Technologies create 

an AI agent that could beat most Atari games at a super-human level [8]. 



18 
 

 

Figure 2.8: The complete DQN algorithm with experience replay 

The pseudocode in figure 2.8 shows that the overall structure of the QL algorithm 

remains largely intact. The changes of adding an ANN and experience replay where the 

two major additions utilized to create a DQN agent. The two new pieces of terminology 

that are important to understanding the code are the terms batch and mini-batch. 

A batch is a sample from an episode or episodes of variable length. For my 

project I elected to use the batch size of 32. This means that when experience replay 

occurs my agent will train on 32 samples of: state, actions, next state, and reward tuples. 

The batch size has heavy implications on how fast your network will train, because once 

it gathers the required size of 32 samples the network will train on that batch. The bigger 

the batch the longer it will take the network to train. This can cause the network to learn 

more with bigger batches, but it significantly reduces the performance during training as 

the training loops are larger.  
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A mini-batch is a single sample from a batch that contains: a state, an  

action, a reward, and the next state. The mini-batch is used in the main loop of experience 

replay on each iteration to analyze the events that unfolded on that turn in the game. The 

main loop in experience replay runs for the size of the batch. With a batch size of 32 the 

loop would occur 32 times and there would 32 separate mini-batches analyzed every time 

experience replay occurs. 

2.5 Application of Literature to Project  

For my project I utilized an ANN with five densely connected layers. I chose to 

do only densely connected layers because it is the quickest of the three types of 

connections discussed to implement and understand. Because this is my first venture into 

ML, a proof of concept was more beneficial than trying to create something completely 

optimized. I also utilize a DQN structure with experience replay as described in section 

2.4. I elected to use a batch size of 32 because this seemed to the average length of a 

single game in most cases. This ensures that my agent will see enough states to learn 

patterns, but not have a batch size so large that the training runs slowly. 
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Chapter 3: Technology Stack 

3.1 Operating System and Hardware 

I elected to use Linux 16.04 LTS as my operating system as Linux seems to have 

more widely available support amongst the ML community. For training the agents I had 

the choice of utilizing a cloud service or my local machine and I chose the latter. My 

local machine is equipped with a NVIDIA 1080TI GPU which has proven to be capable 

of handling training for my project. 

3.2 Programming Languages and Libraries 

 The code for my project is written purely in Python. As of this writing many of 

the libraries written for ML have heavy support for Python. The following is a list of 

libraries I used within my project with an explanation of its use: 

➢ NumPy – Assists with matrix mathematics 

➢ TensorFlow – Primary ML library for computations 

➢ Keras – Used to create the actual ML Model within the code 

➢ Matplotlib – Visualization of data provided from model 

➢ CUDA  + cuDNN – GPU libraries created by NVIDIA to communicate with the 

TensorFlow and Keras libraries 

➢ Anaconda – used for installing CUDA and cuDNN 

➢ Pip – used to install NumPy and Matplotlib as well as TensorFlow (GPU version) 

➢ Python 3.6 – Coding language used for development 

➢ Pygame – Library used to create GUI chess board environment  
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Piece Description 

-1 The Fox 

0 An empty position on the board 

1 Hound 1 

2 Hound 2 

3 Hound 3 

4 Hound 4 

 

Chapter 4: Applied Methods 

4.1 State Representation 

 

Figure 4.1: (Left) How the AI see’s the board. (Right) How humans see the board. 

 As I discussed earlier in chapter 3, the state is what the ANN will use to see the 

board.  In figure 1.1 I used a king to represent the fox and queens to represent the hounds. 

This was to provide a visual differentiation between the two players. For the ANN I pass 

the game board as the state with all the pieces on the board. In figure 4.1 you can see the 

two-dimensional array that the ANN uses to see the current state of the board on the left 

panel, and on the right panel you can see the output I give to the human, so they can also 

assess the current game state.  

 

 

 

 

 

Figure 4.2: Description of pieces shown in state for figure 4.1 

 

 



22 
 

4.2 Action Representation for Fox and Hounds 

Value Fox Action 

0 Move the Fox (-1,-1) or back-left 

1 Move the Fox (-1,1) or back-right 

2 Move the Fox (1,-1) or forward-left 

3 Move the Fox (1,1) or forward-right 

Figure 4.3: Fox action commands to be given by agent 

 As I discussed briefly in chapter 3, I cannot just hand the game to the agent and 

tell it to start learning. I had to define a way for the agent to provide me the desired -

actions that it can perform. Above in figure 4.3 are the actions for the fox and the integer 

value I have assigned each action. The fox can perform 4 possible moves, and I give this 

information to the output layer of our ANN so it knows how many moves it can make. 

The output layer of a given ANN seeks to know the total number of actions it can take at 

a given time step. 

Value Hound Action 

0 Move Hound 1 (-1,-1) or forward-left 

1 Move Hound 1 (-1,1) or forward-right 

2 Move Hound 2 (-1,-1) or forward-left 

3 Move Hound 2 (-1,1) or forward-right 

4 Move Hound 3 (-1,-1) or forward-left 

5 Move Hound 3 (-1,1) or forward-right 

6 Move Hound 4 (-1,-1) or forward-left 

7 Move Hound 4 (-1,1) or forward-right 

Figure 4.4: Hound action commands to be given by agent 

 The difference between the fox ANN and hound ANN breaks down to the action 

size that will be fed to the output layer. The fox simply has 1 piece with 4 possible moves 

as discussed earlier which means the action size is 4 for the fox. Figure 4.4 displays all 

the possible actions for the hounds. The hounds have a total of 4 pieces, but these pieces 

can only move forward in two directions giving them a total action size of 8. 
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4.3 Rewards and Handling Illegal Moves 

Fox Action Reward 

Win +10 

Loss -10 

Forward move +0.25 

Back Move -0.50 

Figure 4.5: Rewards and penalties for fox 

 For the agents to learn how to play, they need rewards and penalties to know if 

they are performing well or poorly. In figure 4.5 you can see the rewards and penalties 

provided to the fox agent as it plays the game. The largest reward for the fox is to win the 

game which will earn the agent 10 points. I wanted to reinforce to the fox that the only 

goal it should have is to win the game any way possible. There are 2 possible penalties 

which we will discuss further.  

 A loss is the worst possible outcome for the agent which is why losing is worth    

-10 points. I want the fox agent to associate being trapped by the hounds as a negative, 

and ultimately the fox wants to avoid being blocked on all four possible movements. 

Another goal for the fox is to continue moving forward when there is an opening to do so 

which is why I reward it when it moves forward with 0.25 points, but punish it for 

moving backward with -0.5 points. This way it encourages the fox agent to reach the goal 

when it has an opening to do so and not back track needlessly. 

 Finally, I had to find a way to handle illegal moves. My first method for handling 

this was to punish the agent when it made an illegal move. When the agent has the 

controls, it is not explained what it can and cannot do. For example, I did not tell the 

agent that when it is at position (0, 0) on the board that position (-1, -1) is illegal. I only 
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gave the agent the controls to move, and it was up to the agent to learn what it could and 

could not do by the rewards and punishments which is why I originally punished the 

agent for taking an illegal move. Punishing the agent was effective over time, but it still 

took valuable training time for the agent to learn some moves are invalid.  

 I then discovered that you can directly alter the predictions that the ANN will 

make by changing the values in its prediction. The agent’s prediction will be an array of 

the size of how many actions it can perform, and the values will be a confidence 

percentage of what moves it wants to take. If you sum the values of the array the total 

will equal 1 representing 100%. The indices of the array represent the action values the 

fox can take in figure 4.2. By setting invalid moves to 0 or below, you are telling the 

agent that the action will not be taken. When the agent begins its learning process it will 

also back-propagate your adjustment, meaning future predictions will know a move is 

invalid based off the corrected value provided. I elected to utilize this method in the end, 

because it saves the agent a large amount of time with trial and error making invalid 

moves. This configuration also eliminated the need to punish the agent for making an 

invalid move as it can no longer make invalid moves. 

 

Hound Action Reward 

Win +100 

Lose -100 

Figure 4.6: Rewards and penalties for hounds 
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Figure 4.6 shows the potential rewards and penalties for the hounds’ agent. You 

may notice that the hounds have heavier rewards and punishments than the fox. Since the 

hounds receive no rewards while the game is being played, it becomes important for the 

rewards and punishments to become more potent. Also recall that hounds have a goal that 

is not as simple as the fox’s goal. The fox simply must reach the end of the board to score 

points, where the hounds must trap the fox in such a way where the fox has no valid 

moves to make.  

The hounds can win the game from any position on the board except the squares 

where the fox can win which are: b1, d1, f1, h1. Because of this ambiguity, I originally 

rewarded the hounds with 5 points for forcing the fox to move backwards. 

 

Figure 4.7: Hounds block forward moves for fox causing it to retreat 

In figure 4.7 you can see an example of the hounds causing the fox to retreat. The 

logic behind this reward is that it takes at least two hounds working together for them to 

cause the fox to retreat. This reward encourages teamwork amongst the hounds which I 

had hoped would lead the hounds to the optimal strategy. I also created a punishment of   

-5 points if the hounds let the fox advance from its current position. This punishment’s 
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purpose is to provide the hounds with an incentive to impede the progress of the fox. 

Despite the hounds showing promising results with this reward structure, I did not see 

enough progress to continue forward utilizing these rewards and elected to use the 

rewards in figure 4.6. 

 I elected to handle illegal moves exactly the same as I handled it with the fox. If a 

move is illegal, I set the value for that move to 0 which guarantees that the move will 

never be selected. This allows the agent to focus on simply improving at the game rather 

than learning what it can and cannot do legally on the board. 

4.4 Neural Network Hyper-parameters 

 

Figure 4.8: Hyper-parameters for fox agent 

 In figure 4.8 you can see the full list of hyper-parameters for the fox agent. I 

deploy the epsilon-greedy strategy in order to give the agent a chance to explore moves it 

normally would not when acting deterministically. This strategy is designed to prevent 

the agent from locking in on 1 strategy it may try to repeatedly exploit that may be sub 

optimal. I augment this strategy by allowing epsilon to decay over time and become 

smaller. This will ultimately prompt more exploration as the agent plays through more 

Variable Value Description

self.state_size (8,8) Represents 8x8 board

self.action_size 4 4 total actions the fox can take

self.memory 30000 Size of the agents memory (how many states it retains)

self.gamma 0.95 Discount on future rewards

self.epsilon 0.9 Controls if the fox acts randomly or deterministically

self.epsilon_min 0.6 Minimum threshold epsilon can reach

self.epsilon_decay 0.9995 How fast epsilon decreases over time

self.learning_rate 0.001 Control how much the agent retains after an epsiode

self.batch_size 32 Number of states used in experience replay

episodes 10000 Total number of games to train for

Fox agent hyper-parameters
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and more episodes. I do not let epsilon fall below 60% because I want the agent to act 

deterministically more often than not.  

 The learning rate seen in figure 4.8 is designed to let the agent retain its 

information at a slow pace. This way the agents don’t allow anomalies to override its 

policy. When the agent is learning from experience replay, the batch size controls how 

many states will be played back to the agent so it can learn from them. This variable has a 

heavy impact on how fast episodes are completed because experience replay occurs 

frequently. A single element in a batch, called a mini-batch, contains: a state, action, 

reward, and the next state attained after the action was taken. 

 

Figure 4.9: Hyper-parameters for hound agent 

 Above in figure 4.9 you can see the full list of hyper-parameters for the hound 

agent. They remain largely unchanged from the fox agent as I would like to keep things 

as even as possible to keep a level playing field for both agents. The one notable change 

here is that the action size for the hounds was raised from 4 to 8 to account for the 

different actions the hounds have. Both agents share 10,000 episodes during their training 

which is set arbitrarily. During training each agent saves its model after 10 games played 

to make sure it can continue to build off what it has already learned.  

Variable Value Description

self.state_size (8,8) Represents 8x8 board

self.action_size 8 8 total actions the hounds can take

self.memory 30000 Size of the agents memory (how many states it retains)

self.gamma 0.95 Discount on future rewards

self.epsilon 0.9 Controls if the fox acts randomly or deterministically

self.epsilon_min 0.6 Minimum threshold epsilon can reach

self.epsilon_decay 0.9995 How fast epsilon decreases over time

self.learning_rate 0.001 Control how much the agent retains after an epsiode

self.batch_size 32 Number of states used in experience replay

episodes 10000 Total number of games to train for

Hound agent hyper-parameters
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4.5 Network Architecture 

 

Figure 4.10: Construction of the fox ANN 

 In figure 4.10 you can see the construction of the ANN for the fox. Thanks to the 

TensorFlow and Keras libraries, the creation of the model is relatively easy. In each line 

of code you may notice that the model starts off with the word dense, signifying a 

densely connected layer. 64 represents the total number of neurons in that layer, and this 

was decided largely due to the board size. 

 Between each layer is an activation function which I have chosen to use ReLu as 

shown in figure 4.10.  The activation function oversees what data gets to move on to the 

next layer of the ANN. The ReLu activation function is the most commonly used 

activation function for deep learning models [9].  

 In the output layer you can see where the total number of moves is fed to the 

agent. Also, you can see that the activation function is different from all other layers 

where a ‘softmax’ is utilized. Softmax will provide a distributed prediction amongst all 

the possible actions provided. In the case of the fox with four possible actions, the 

softmax activation function will give a prediction of which move will most likely return 

success amongst the four possible moves. 
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 For the loss function I utilize the mean squared error (MSE) method. This method 

measures the predicted outcome from the ANN vs. the actual outcome. It takes the 

difference of the two results, the actual outcome and predicted outcome, and squares it. 

This result is back-propagated through the network in order to update the values in hopes 

of making the predictions better in the future. 

 The optimizer I elected to use is the Adam optimizer. The Adam optimizer is 

utilized to assist with optimizing the neural networks and decrease the loss between the 

actual outcomes vs. the expected outcomes. It employs a strategy which utilizes 

momentum to get out of local minima and maxima. Specifically, the algorithm calculates 

an exponential moving average of the gradient and the squared gradient [3]. 

 

Figure 4.11: Construction of the hounds ANN 

 In figure 4.11 you can see the construction of the ANN for the hounds. Code wise, 

it is structurally equivalent to the fox ANN. The difference lies in the action size as I have 

discussed previously where the hounds have a total of 8 possible actions. The softmax 

activation function will distribute its prediction amongst the eight possible outcomes. 
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4.6 Double Deep Q-Network for the Hounds 

 A Double Deep Q-Network (DDQN) is simply a DQN that employs the use of a 

2nd neural network to keep the training balanced. Think of a DDQN as a DQN with a 

supervisor neural network monitoring the DQN. The DQN is updated every iteration, but 

the supervisor ANN is updated periodically to keep things in balance.  

 This method is utilized to prevent a single ANN from overestimating or 

underestimating values for moves. When utilizing a DQN structure the ANN is updated 

on every single iteration, and if the play out on certain iterations was not favorable this 

could cause the ANN to destabilize and give less reliable predictions in the future. In my 

DDQN I update the supervisor ANN every 50 games in order to give the supervisor a 

larger sample size of data to absorb. This method is designed to keep a few bad games 

from ruining optimal strategies the ANN may have learned. In chapter 6 I will discuss the 

results of this implementation including comparing it to the normal DQN 

implementation. 
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Chapter 5:  Results 

5.1 AI Fox vs. Random Hounds 

 
Figure 5.1: A snapshot from a game (results above) 

 One of my first tests for the fox was to face off against random hounds. I did not 

expect the random hounds to win very often because the design of this test was to see if 

the fox truly was learning. In figure 5.1 you can see the fox agent has already claimed 

5162 games successfully in this current run. The average score was 11.34 points, and this 

is significant because the maximum score the fox agent can achieve is 11.75. The fox 

agent gets 10 points for winning, and since it earns 0.25 points per move forward, if it 

moves forward 7 consecutive times it will get 1.75 points totaling 11.75 points. When 

training the model, the first few games typically saw the fox wandering around aimlessly 

until fox lost or the fox stumbled upon a victory square. 

 In this stage, typically the number of turns taken was very high because the fox 

had not learned what rewards it positively to this point. Once the fox reaches its goal state 

and earns a positive reward, this information back-propagates through the ANN updating 

the weights and biases. The next few episodes usually see the fox trying to reach the 

same goal state as it has before. 

 This is where epsilon plays a large role in learning. By allowing the fox to 

perform a random move by some epsilon factor, the fox will eventually land on a new 
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winning square causing the neural network to update. After a lot time has passed and the 

fox has discovered all of its possible positive reward squares the problem shifts to 

navigating the hounds. 

 Fortunately for the fox agent, the hounds are random which means they typically 

do not work together. In this training exercise more often than not the fox was simply 

impeded by one or two hounds which it typically avoids with ease. The results in this 

training where very encouraging as the fox not only showed improvement in win 

percentage, but also in the number of turns it took to win against random hounds. 

 
Figure 5.2: Graph of Average win percentage of AI Fox vs. Random Hounds 

 In figure 5.2 you can see the average win percentage which is rounded down for 

the fox. Once the agent had trained for over 100,000 games, I noticed the fox agent 

performed well enough that a random hound agent could not really compete with the fox 

agent. 
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5.2 Random Fox vs. AI Hounds 

 
Figure: 5.3: Hound agent vs. random fox (results above) 

 

 Due to the complex nature of the end-game for the hounds, the agent requires an 

extremely-large number of episodes before it begins to converge on an optimal policy. I 

would also like to point out that the hounds do have an optimal strategy that will always 

win the game, but as of this writing my best performing agent has yet to achieve this 

strategy and it has trained for well over 1,000,000 episodes. 

I assumed that the end-game for the hounds would require a large amount of time 

to learn an optimal policy. Because of this factor I believed it was best to start the hounds 

off against a completely random fox agent in hopes of having it learn its goal. The 

hounds struggled to capture the fox over a very long stretch of training. This poor 

performance I attribute to several factors which I will outline in this section. 

 Figure 4.6 in chapter 4 outlines the rewards for the hounds that have achieved the 

best results. I did reward the hounds at one point for forcing the fox to move backwards, 

but ultimately, I felt this reward structure became more of a hindrance than achieving my 

desired results. I instead opted for a more generic reward structure, and my hope was for 

the hounds to generalize the problem to be able to handle multiple different gameplay 

scenarios. I also at this time uncovered a logic error I had created in my code and the 

combination of fixing the error and applying the rewards had promising results. 
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Figure 5.4: (left) Hound win % before change (right) Hound win % after change 

 

 After making this adjustment and over 100,000 episodes later, the hounds win 

percentage did increase by almost 35%. In figure 5.4 you can see the results from before 

and after the change. Although these results are encouraging, the increase seemingly 

plateaued and did not grow beyond 45%.  

 When testing the performance of the ANN I set epsilon to 1, which means that the 

agent will always act deterministically. This way I can accurately gauge its performance 

without a random move interfering with the agent’s decisions. Even with everything 

seemingly stacked in the hound’s favor, the agent still wins less than 1/2 of the time 

against a vastly inferior opponent. I do believe that it can still perform better, but the 

issue here might be with the DQN structure as I will discuss in a later section. 

5.3 Fox AI vs. Hound AI 

 In this section I will discuss the performance of both agents as they play against 

each other. The results of section 5.2 show that the hounds’ agent has a lot of ground to 

make up. My first primary test was to see how the agents fared against each other with no 

training.  

 In section 5.1 I outlined that the fox agent quickly was able to identify a winning 

strategy and then began to exploit that strategy until a new one was discovered. The fox 

agent now playing against an opponent not acting randomly managed to repeat the same 
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results as it had in its first test. Once the fox learned its goal over the first few episodes of 

its life, the agent for the hounds did not stand a chance. 

 This is largely attributed to the fact that the fox usually learns its goal first, and 

then begins to optimize its policy right away. The hounds may not win a game for over 

several hundred episodes which can cause the agent to fall behind the fox drastically. The 

secondary point which we have already discussed is the difficulty of the goal for the 

hounds to achieve. Even though the hounds may end up trapping the fox in a corner that 

does not guarantee that the same events will occur in the next episode. It became clear 

during the training that the hounds would not be able to compete with the fox if both 

agents started evenly. 

 
Figure 5.5: Average win percentage of both AI’s vs. each other 

 Figure 5.5 unfortunately tells a gruesome tail off loss for the hounds’ agent. There 

are still important takeaways from the graph in figure 5.5. The first is that the agent for 

the hounds managed to perform better against the fox agent than a random hound agent. 

Unfortunately, the hounds’ agent only manages to out-perform the random hounds by 
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only 2%. Even as the training progressed the hounds would only close the gap by tenths 

of a percent over the period of several days.  

 During this time, I wanted to test if a trained hounds’ agent could have any 

success against a fox that was not trained. Despite very early promising returns, as the 

fox agent begins to receive more feedback it eventually will continue its dominance over 

the hounds’ agent. The results over 100,000 games ultimately register a slight uptick in 

win-percentage for the hounds but not enough to break 4%. 

5.4 Fox AI vs. Hound AI with DDQN 

 As discussed in chapter 4, the DDQN was implemented for the hounds in order to 

prevent the agent from destabilizing during training. The hounds had proven to this point 

that they needed every possible advantage that they could afford against the fox agent 

which is what lead me to implement this structure. Despite some promising early returns, 

even a DDQN proved to not be enough for the hounds to overcome the agent for the fox. 

Training with the DDQN for over 100,000 episodes, the results for the DDQN 

unfortunately fell in line with the results from figure 5.5. 

5.5 Human vs. Trained Fox AI 

 After I trained the fox agent sufficiently, I created a method for humans to play 

against each agent. The fox agent continued to impress, but this time with a human 

controlling the hounds the fox did not fare nearly as well as before. The fox agent does 

show solid awareness for gaps it can attack if given the chance, but the agent also 

displayed a lack of situational awareness which will be discussed in chapter 6. My goal 

for these tests was not necessarily to win, but to test how the fox responds in several 

situations. 
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 In each situation the agent seems to greedily attack openings when it can. The 

major downfall in its performance is it does not seem to grasp the bigger picture of the 

game and how it loses. I found that the agent is aware that it wants to avoid position a8 

when threatened as it is very easy for it to lose in this position. Other positions that it tries 

to avoid are positions on the edges of the board, but I feel this leads to some indecision 

when it finds itself on the edge of the board. Overall despite some of the abnormalities 

the agent performs capably against a human opponent. 

5.6 Human vs. Trained Hounds AI 

 The agent for the hounds had not progressed well enough to test in a game of wins 

and losses. The tests in this section were purely situational, and mainly designed to see if 

the hounds’ agent could detect possible chances to win.  Unfortunately, despite the agent 

showing some awareness of general scoring positions such as a8 on the board, it does not 

seem to realize fully that the fox should be its target. 

 The agent will blindly rush to a8 sometimes completely ignoring if the fox piece 

is in that location. Other times the agent does show some willingness to utilize multiple 

pieces and block the fox. But unfortunately, the agent for the hounds prefers to rush 

individual points more often than not and shows a complete lack of situational awareness. 
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Chapter 6: Further Discussion of Results 

6.1 Overall Evaluation of Fox AI 

 With over 1,000,000 games played for the fox AI, I am thoroughly impressed 

with the speed of which it recognizes how to accomplish its primary task. However, this 

does not mean this agent performs perfectly in every given scenario. When the fox agent 

has an unimpeded path to one of the winning squares the agent performs as you would 

hope directly moving toward a target. When the hounds provide the fox agent some 

resistance the fox sometimes acts irrationally.  

 

Figure 6.1: Example of the fox agent failed to make 

 In figure 6.1 you can see a move the fox agent can make where it has certain 

victory if the moves are taken as outlined. Inexplicably, even though this move is 

available the agent has had odd occasions where it retreats to either square behind it. 
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These odd events typically occur on the edges of the board where there is some resistance 

by the hounds. This situation doesn’t occur often, but it does pop enough to be noticed. I 

believe with more training in these situations they should eventually smooth themselves 

out. 

 When there is pressure in the middle of board the agent seems to be more 

confident in its decision making. It seemingly retreats when appropriate and attacks when 

there is an opening. I attribute this to most of the games being played in the middle of the 

board prompting the agent to have more confidence in these situations. Overall with some 

flaws the agent for the fox seems to perform admirably.  

6.2 Overall Evaluation of Hounds AI 

 1,000,000 plus games played for the hounds’ agent and it still feels that it has not 

trained enough. There are times where the hounds will offer a glimmer of teamwork 

forcing the fox to retreat. There are also times where the hounds will have the fox in a 

virtual no-win scenario, and somehow fail to recognize the situation. This occurs far 

more frequently than one would hope which is why they boast a 3%-win rate. 

  
Figure 6.2: An example of a winning scenario lost by the hounds’ agent 
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 In figure 6.2 you can see an example where the hounds failed to detect the 

winning strategy. The hounds had two moves left to make to secure victory. After the fox 

makes a move forward to d7, the hound on b7 could move to c8 and secure the victory. 

The agent elected to move the hound on e6 to f7 instead which ended up costing the 

hounds the win.  

 Unfortunately, I cannot say at this point that the hounds perform even near human 

level. The agent continuously makes mistakes that humans playing at a novice level 

would not make. More training may ultimately make the agent converge to the optimal 

policy, but progress only continues forward at a snail’s pace. DQN’s have shown they 

can handle games as complex as chess, but ample time to train with other speedups 

typically accomplish this task. Either more time, or other methods augmenting the DQN 

may be the way to go when attempting to have it converge on the optimal policy. 
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Chapter 7: Conclusion and Future Work 

7.1 Conclusion 

 My objective when I started on this journey was to create 2 agents to play 

the game of fox and hounds utilizing a DQN structure for both agents. I was able to 

accomplish this task and apply all the tests I sought out to perform to see which agent 

ultimately would become the best. Even though it became easy to see the fox agent was 

superior to the agent for the hounds’, I still believe it is possible for the hounds to 

converge on the optimal strategy to win every game. I believe with a better reward 

strategy and augmenting the DQN for the hounds’ agent with different techniques can 

cause it to ultimately learn the optimal strategy. I also managed to implement a DDQN 

for the hounds, but ultimately failed in seeing the hounds converge on an optimal 

strategy. 

7.2 Future Work 

 Future work for my project will mainly be focused on improving the hounds’ 

performance. I believe that an attempt to use different methods to augment the DQN such 

as Monte Carlo tree search (MCTS) could have major benefits to the hounds’ agent 

performance. I feel a CNN will speed up training and may be useful in the search for an 

optimal strategy. A final addition I would like to see is expanding the game to 2 foxes 

and 7 hounds. Since the current game has a scenario where the hounds can always win, it 

would be interesting to see how the game would play out with more pieces on each side.  
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